
Page 1 of 6

Recent Advances in Program Correctness Verification (PCV)

© Copyright 2009, Colin James III All Rights Reserved

Colin James III, CEC Services, LLC, pcv-demo@cec-services.com, see 4-VL.com.

Abstract

The advantage of PCV is that there is now a fully automated and mechanical method to

prove mathematically the correctness of software source code by tabular lookup. Hence

PCV may save the resources of large consumers of requirement built software, such as

the Department of Defense, during the final verification phase of development.

Introduction

The purpose of this paper is to describe the theory and implementation of software

program correctness verification (PCV). There are two sections: What is tested; and

How it is tested.

Validation and Verification are named collectively as “V&V”. In order to meet

requirements, validation tests if the correct thing is built, and verification tests if the thing

built is built correctly
1
. Correctness means the logical, mathematical proof that a

software component is built without error. The mechanism for proof is four-valued bit

code (4vbc)
2
. This is defined as four atomic elements of dibits: {00} not bivalent; {01}

true; {10} false; and {11} bivalent. The left right sides of the the dibits are additional

variables as the false and true sides {F|T}. True {01} really means {0|1}, where {0|}

means the switch on the false side is off, that is not false, and {|1} means the switch on

the true side is on, that is true. In other words, {01} means {not false | true}. Similarly,

{00} means {not false, not true}, that is “not false AND not true”, which is impossible

and a contradiction. {11} means {false, true}, that is “false OR true”, which is a

tautology and the basis for proving axioms and theorems in formal logics
3
. From these

atomic dibits, pairs of dibits (4-bits) are derived to describe as true, false, or meaningless:

1
 Carnegie Mellon Software Engineering Institute (SEI) classifies Verification in the Capability Maturity Model

Integration under product development as CMMI-DEV at Level 3 of 3.

2
 See 4vbc.com and 4-VL.com

3
 See references [1] and [2] below.

Page 2 of 6

The picture of the reality of software: The picture of the non reality of software:

{10 01} {00 01} {10 00} {00 00}

conditionally true necessarily not permissible contradiction

{01 10} {11 10} {01 11} {11 00}

conditionally false not necessarily permissible not optional

{01 01} {11 01} {01 00} {00 11}

logically true possibly ought to be the case optional

{10 10} {00 10} {10 11} {11 11}

logically false not possibly not ought to be case tautology

The word labels become the descriptions of the relative and cumulative correctness of the

software components to be verified.

What is tested

TrueBASIC
4
 is a portable educational language chosen here to explain PCV. In

TrueBASIC, software programming may be decomposed into three types of structures as

loop, branch, and reuse. The loop forms are DO-LOOP, DO-LOOP-UNTIL, DO-LOOP-

WHLE, DO-UNTIL-LOOP, DO-WHILE-LOOP, and FOR-NEXT. The branch forms

are IF-THEN-END-IF, IF-THEN-ELSEIF-END-IF, and SELECT-CASE-END-SELECT.

(The SELECT form is not evaluated here because it can be implemented more clearly in

the IF-THEN-END-IF form.) The reuse form to encapsulate a subroutine is SUB-END-

SUB. While this is a form of flow control invoked by CALL, it is arguably not the

branch form of IF-THEN that is based on a test.

The loop form has an iterator that is checked against a sentinel limitor at the beginning

(top) or the end (bottom) of the loop. The FOR-NEXT is checked at the top and

automatically iterates. Therefore the developer is relieved of manually incrementing the

test counter in the automatic “FOR i = 1 TO 10”. However, this may be a mixed blessing

because the manual control of the iteration forces the developer to pay closer attention to

exactly how the loop advances. The advantage of a DO-WHILE-LOOP comes when

manually incrementing the iterator directly above the bottom line of the loop. This is

because to end the loop prematurely, or short circuit it, the iterator can then clearly be set

equal to the loop limitor from within an IF-THEN test block. This avoids the vagaries of

the arbitrary EXIT-DO or EXIT-FOR short circuit statements so as to impose a clear

ending should an early exit strategy from the loop be required.

4
 This note about programming style is the best by test to improve source code readability for others. In

TrueBASIC, each line begins with a standard keyword, such as the assignment statement of LET. As a convention,

library commands have a leading upper case letter. Variable names are explicitly not in Hungarian notation as

“HungarianNotationVariable” but instead use name blocks shortened into three letter blocks and separated by the

underscore character “_” such as “hun_nte_var”. The use of parenthesis and mathematical operators are accentuated

with a leading space and some trailing space where “SQR(b^2-2*a*c)” is written as “SQR((b ^ 2) – (2 * a * c)).

Page 3 of 6

The preferred DO-WHILE-LOOP has additional lines of code before the block begins to

prepare the value of the limitor and the initial iterator. The formula after the WHILE

clause is a subtraction test for zero in the syntax of “sentinel – iterator = 0” because of the

following advantage. Most hardware processors have arithmetic controllers that

decrement slightly faster than they increment because of fewer assembly language

instructions and machine code cycles. Hence the operation of subtraction is preferred.

The further preferred syntax is “NOT(sentinel – iterator = 0)” because of another

advantage. The NOT operator is in the same class of fast, primary operators such as

subtraction. The NOT operator also takes precedence over the slower, secondary

operators of “>” greater than and “<” less than. Another advantage supports the

readability of source code. It is easy for the eye consistently to find and read the WHILE

test in the preferred format, and to distinguish by the absence of NOT from other tests in

that syntax
5
. The disadvantage to the DO-WHILE-LOOP is that it takes longer to

implement.

The structure of branching is meant to simplify rather than confuse. This requires that the

flow control makes no assumptions and implements requirements by explicit test of every

logical test case. Here the IF-(true state)-THEN is incomplete. However, it is complete

if accompanied by the IF-NOT(true state)-THEN form. The advantage of this approach

is to provide complete logical coverage that also affords clearer visual control.

Complex branching structures are recomposed from unnested IF’s into nested IF’s as

follows.

Unnested IF’s (3): Nested IF’s (6):

IF tru_001 THEN IF (tru_001) THEN

END IF END IF

 IF NOT(tru_001) THEN

IF tru_002 THEN IF (tru_002) THEN

END IF END IF

 IF NOT(tru_002) THEN

IF tru_003 THEN IF (tru_003) THEN

 END IF END IF

 IF NOT(tru_003) THEN

 END IF

 END IF

 END IF

5
 As a programming side note, implementation of interlocking loops in nested DO-WHILE loops clearly separates

the iterators and makes obvious how the values of the iterators relate.

Page 4 of 6

The three unnested IF’s may appear separately in any order and with the same result.

The unnested IF’s obtain comprehensive test coverage only when the NOT of their

respective tests is also evaluated. The nested format accommodates the evaluation of all

possible test cases. The nested format also provides a mechanism to specify the

precedence of one test over another based on the practical frequency of the test. For

example, if the test NOT(tru_003) is logically visited less often, then it is appropriate to

place that test more deeply in the nest. The method of placement of the test based on

how often its code is reached is named stacking. The method of nesting the tests to

ensure complete case coverage is named packing. The entire technique is named “stack

and pack”. The disadvantage of the stack and pack of IF blocks is that it requires two

times more IF blocks to implement than do the unnested IF blocks.

The SUB-END-SUB structure is its own straightforward form. The short circuit

statement of EXIT-SUB is avoided by using IF-THEN blocks. Functions are not

evaluated because a function may be rewritten more clearly as a subroutine that sets a

value so as effectively to return it. To recap, the fundamental programming structures

considered here for verification of correctness are DO-WHILE-LOOP, IF-THEN-END-

IF, and SUB-END-SUB.

How it is tested

The software blocks above share common features at run time. They may exist or not

exist in the test program. They may have or not have entry accessibility to their code.

They may contain code that is executable or may not contain code as a null stub. They

may raise or not raise exceptions such as errors. These test conditions are respectively

named Exist, Enter, Execute, and Error (or Exception) and are collectively named “The

Four E’s”.

The input test code has a mandatory structure that it is encapsulated as a subroutine of the

form SUB-END-SUB. It is then invoked from a CALL located at the program level of

mainline processing.

The input test code is parsed for the blocks DO-WHILE-LOOP, IF-THEN-END-IF, and

SUB-END-SUB. Test directives are embedded into the test code directly before and after

the lines of DO-WHILE and IF-THEN, and after the line of SUB. The test directives

have the arbitrary syntax of “CALL Test_ …” and “SUB Test_ …”. The test code is

rewritten to include these test directives and reparsed. Keywords that are deemed illegal

by the parser are “EXIT” and “STOP” which cause the PCV program to terminate. The

PCV program then determines what block forms exist within the test code. The test code

is executed from within the PCV program which acts as a real time program monitor.

When the test code is executed, its test directives write flags for the entry accessibility of

each block visited in real time. The PCV program evaluates each block for the presence

of executable code. If a block does not have entry accessibility, then the content of the

block is evaluated anyway for the presence of code. This is because the inaccessibility of

code within a block may be the side effect of particular value settings in the input test

Page 5 of 6

code. If the content of the block contains executable code, then the PCV program

executes that code segment in real time and notes exceptions raised. If the content of the

block contains no executable code, then the block is flagged as not executable, and the

error result is noted as unknown.

In the case of the SUB block, if there is executable code present then it is executed. The

error result is that of either “no error present” or “no error not present”. However, if the

code within the SUB block contains a CALL to a target subroutine, other than to the

embedded test directives, then the presence of that object CALL causes the contents of

the SUB block to be evaluated as the unknown “no error present or not present”. This is

because the correctness result for the target subroutine is not necessarily visible since

that result is tabulated independently from the code block containing the object call. If

the SUB block is not entered then the contents of the block cannot be executed, and the

error result is also that of “no error present or not present”.

PCV is immune to recursion
6
. This is because of the fact that by virtue of a subroutine

making a call to any subroutine, including itself, the correctness code for the error result,

regardless of execution or non execution, is still “no error present or not present”.

The output results for each block test produce the dibits symbolized by ab, cd, ef, and gh

that combine into an 8-bit number of the form abcd_efgh.

Exist (ab) = XXcd_efgh: not present 10cd_efgh 128; present 01cd_efgh 64

Entry(cd) = abXX_efgh: not present ab10_efgh 32; present ab01_efgh 16

Execute(ef) = abcd_XXgh: not present abcd_10gh 8; present abcd_01gh 4

No Error(gh) = abcd_efXX: not present abcd_ef10 2; present abcd_ef01 1

 unknown abcd_ef11 3

Hence each test block is assigned an 8-bit correctness code. If the code is an even

number, then a run time exception was raised, making the block ultimately incorrect. If

the code is an odd number, then the block has no run time exceptions, but may have a

degree of incorrectness due to no entry accessibility of that block meaning the block is

potentially dead code. The correctness code for each block and its preceding blocks may

be compiled into a running accumulation of correctness. The intermediate block values

are compiled using the logical AND operator modulo 256 (modulo 255 + 1). Because

odd number multiplied by odd numbers produce odd numbers, and even modulo greater

than the largest odd number, in this case 255, assures that a modulo result of zero may

not become an explosive annihilator as the multiplicand.

6
 Recursion is the programming technique whereby a subroutine or function invokes itself. An early recursive

program was QuickSort, the algebra for which spawned much interest. This was because recursion consumes

computing resources at often unpredictably prodigious rates.

Page 6 of 6

The correctness code may be checked for being an axiom or a theorem. This step builds

an 8-bit logical lookup table (LUT). As there are 256 different 8-bit numbers, there are

also 256 possible LUTs, numbered 0 to 255. An 8-bit number contains the unique logical

identifier to build its own LUT such as for LUT 6. This process uses a two lined

template to evaluate all possible bit combinations for the left and right bit within a dibit,

and then to build a dibit LUT:

 Template Left bit Right bit \ q 00 01 10 11

Line 1: 0011 0011 p \

Line 2: 0101 0101 00 00 01 00 01

LUT 6 0000 0110 01 01 00 01 00

 10 00 01 00 01

 11 01 00 01 00

Because the left and right bit patterns are different, the logical operator for LUT 6 is an

axiom, and not a theorem. (By contrast, the bit pattern for LUT 119 is 0111 0111 for the

logical operator OR.) In words, LUT 6 means “Necessarily(OR)” and also “Not(

Optionally(OR))”. This method enables the verifier to evaluate the level of

mathematical proof of correctness by tabular look up, and is named “tableau”.

Conclusion

Program Correctness Verification (PCV) is advanced by its implementation in four-

valued bit code (4vbc). The PCV as described and implemented in TrueBASIC in this

paper is also rapidly extendable to Ada2005, C++, Cobol, FORTH, Fortran, Java, and

Python. The advantage of PCV is that there is now a fully automated and mechanical

method to prove mathematically the correctness of software source code by tabular

lookup. Hence PCV may save the resources of large consumers of requirement built

software, such as the Department of Defense, during the final verification phase.

References

[1] Goodwin, Garry.; James III, Colin. “Logical Foundations of Four Valued Bit Code

(4VBC).” 8
th

 International Workshop on Boolean Problems. Freiberg (Sachsen),

2008: 239-250.

[2] James III, Colin. "How to Map Software Loops and Flows into dibits of Four-

Valued Bit Code. 18th International Workshop on Post-Binary ULSI Systems.

Naha, Okinawa, 2009: 42-49.

